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NUMERICAL ANLAYSIS OF DYNAMIC CRACK PROPAGATION: GENERATION

AND PREDICTION STUDIES

T. Nishioka* and S.N. Atluri#*#*

Center for the Advancement of Computational Mechamics
School of Civil Engineering
Georgia Institute of Technology, Atlanta, Ga. 30332

Abstract:

Results of "generation'" (determination of dynamic stress-intensity fac-
tor variation with time, for a specified crack-propagation history) studies,
as well as '"prediction” (determination of crack-propagation history for speci-
fied dynamic fracture toughness versus crack-velocity relationships) studies
of dynamic crack propagation in plane-stress/strain situations are presented
and discussed in detail. These studies were conducted by using a transient
finite element method wherein the propagating stress-singularities near the
propagating crack-tip have been accounted for. Details of numerical procedures
for both the generation and prediction calculations are succinctly described.
In both the generation and prediction studies, the present numerical results
are compared with available experimental data. It is found that the important
problem of dynamic crack propagation prediction can be accurately handled with
the present procedures.
Introduction:

For dynamic crack propagation in finite elastic bodies, the interaction
with the crack-tip of stress waves reflected from the boundaries and/or emanated
by the other moving crack-tip plays an important role in determining the inten-
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sity of the dynamic singular stress-field at the considered crack-tip. Be-
cause of the analytical intractabili.y of such elasto-dynamic crack-propagation
problems, computational techniques are mandatory. A critical appraisal of
several such computational techniques was made by Kanninen [1] in 1978. Most
of the finite element techniques reviewed in [1] use conventional assumed dis-
placement finite elements near the crack~tip and hence do not account for the
'
known crack-tip singularityl Moverover in these techniques, crack-propagation
was simulated by the well-~known "node release'" technique, which, as discussed
in [1], may not be sufficieptly accurate. The literature on dynamic finite
element methods for simulation of fast fracture, since the appearance of [1],
has been reviewed in [2,3,4].

In Refs. [2,3,4], the authors have presented a "translating-singularity"
finite element procedure for simulation of fast crack propagation in finite
bodies. In this procedure, a singular-element, wherein the analytical eigen
functions for a propagating crack in an infinite domain were used as basis
functions for assumed displacements, was used near the crack-tip. In simu-
lating crack-propagation, this singular element was translated by an arbitrary
amount AL in each time-increment At of the time-integration scheme. During
this translation, the crack-tip retains a fixed location within the singular
element; however, the regular isoparametric elements surrounding the moving sin-
gular element deform approériately. It was shown [2,3,4] that the above finite
element method, which was based [2,3] on an energy-consistent variational
principle for bodies with changing internal boundaries, leads to a direct eval-
uvation of dynamic K-factors for propagating cracks. Attempts at simplifying
the above procedure, by employing alternatively, a singular element with only
the well-known Williams®' eigen-functions for a stationary crack being used as
element basis-functions, or distorted triangular isoparametric elements (the so-

called "quarter-point elements"), in pliuce of the above described singular-ele-
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ment, were made in [5]. However, all the examples presented in [2-5] fall into the
category of "generation studies" in the sense decribed earlier. Specifically,
results for finite-domain counterparts of the well-known analytical problems

for infinite domains, solved by Broberg, Freund, Nillsson, Thau and Lui, Sih et

al (as referenced in [2,3]), were presented in [2-5], to indicate the effects

of finite boundaries, and stress-wave interactions, on dynamic crack-tip stress~
intensity, in these problems.

In the present paper, which emphasises the "inverse" or "prediction" prob-
lem, namely the determination of crack-tip propagation history in a plane
stress/strain problem for a specified dynamic fracture-toughness versus crack-
velocity relation, the following topics are discussed: (1) a synopsis of
the mathematical formulation for analysis of 'the “generation" problem; (ii) des-
cription of the details of analysis of the "prediction" problem; (iii) detailed
description and discussion.of the numerical results of both the "generation"
and "prediction" studies of wedge-loaded rectangular double cantilever, and
tapered double cantilever, beam specimens for which experimental data has been
reported by Kalthoff et al [6,7] and independent numerical results have been
reported by Kobayashi et al [8], and Popelar and Gehlen [9]. The present
paper ends with some conclusions and a discussion of the open questions in
numerical analysis of fast crack propagation in realistic metallic structures.

Synopsis of the Formulation of "Generation' Problem:

Consider two instants of time tl and t2 = tl + At. Assuming, without loss

of generality, that the crack propagation is in pure mode I, let the crack lengths

at t and tz be 21 and XZ = El + AL, respectively. Let the displacements, strains,

1 1 1 2 2
and stresses at ty and t, be, respectively, (ui’ iy and Uij)’ and (ui, €4y

9
and JIj). The variables at time tl are presumed known. It has been shown [2,3]

that the variational principle governing the dvnamic crack propagation between

t1 and tz can be written as:




2 1 2 2.1 2
.Ik(oij+oij)6€ij + p(ui+ui)5ui}dv

f(T T+T )(Su ds + f(r +T )+(6u§)+ds

2.1 1 +
_/;§11+01 (s ui) ds (1)

In the above, V_, is the domain, and s02 the external boundary where time-de-

2

T, are the prescribed tractions

pendent tractions are prescfibed, at time t2; i

at time tl at sol(=soz) 18 ;ell as at Z;; Ti are the prescribed tractions at
time tz at s o as well as at AZ+; ( )+ indicates the upper half of the crack
face, which only is considered in the present mode I problem. It is seen that
oijv§ are the cohesive forces holding the crack-faces together at time tl. Thus,

it is seen that the integrand (ol v1)+(6u ) in the last term of the r.h.s. of

Eq. (1) corresponds to the term of energy-release rate due to dynamic crack
propagation. The Eq. (1) may thus be viewed as a virtual energy-balance re-

lation for dynamic crack-propagation, and hence the present numerical method

based on Eq. (1) is inherently energy-consistent.

1 1 . 2 2 2
In Eq. (1), (ui,oij) are known, while (oij’eij’ and ui) are the variables.
Now, Eq. (1) is used to develop a finite element approximation at time t2. Thus,
the domain V2 is discretized into a finite number of elements, with a domain Vs

immediately surrounding the crack-tip being treated as the so-called '"singular

element”, and the domain V —VS being mapped by the well-known, B8-noded, isopara-

2

metric elements. In the singular-element VS, the basis functions for assumed
dispalcements are the crack-velocity dependent eigen-function solutions to the
elasto-dynamic problem of crack-propagation in an infinite domain, as discussed
in this paper.

Note that at time Y in the present mode 1 problem, the crack tip is loc-

ated at xl = El + AY and hence the singu.ar-element is centered at xl = Zl + AL

In developing the equations for the finite clement mesh at t it is seen from

2’

Eq. (1) that the variation of J% and u: must be known in the finite element mesh
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at tl. In the mesh at tl the crack-tip was located at X = EJ and hence the

crack element was centered at Zl. Thus between t1 and t2 (cl+At) the crack

element is translated by an amount AL. While the crack-element is trans-

at tz. However, o , and u; were solved for, in the finite element mesh

lated, only the elements surrounding the moving crack-tip are distorted. Thus
the finite element meshes at times tl and tz differ only in the location of the
crack~tip (and hence the crack-element) and the shapes of the immediately sur-

rounding isoparametric elements. Thus, the known data at oij

mesh at tl is interpolated easily into corresponding data in the mesh at t2.

Further details of the above translating-singularity-element method of simu-

and u; in the

lating dynamic crack propagation in arbitrary shaped finite bodies can be found

in [2,3].

We now remark briefly on the basis functions for assumed displacements used
in the singular element. Let xa(a=1,2) be fixed rectangular coordinates in the
plane of the present 2-dimensional elastic body, with the crack-tip moving along

the X axis and Xy is no-mal to the crack-axis. We introduce a coordinate sys-

tem (E,xz) which remains fixed w.r.t. the propagating crack-tip, such that

g = xl—vt, where v is, without loss of generality, the constant speed of crack-

propagation. It can be shown [2,3] that the elastodynamic equations, governing

this problem, for the wave potentials ¢ (dilatational) and ¥ (shear) are:

-/ 21037 000e%) + QPwraxdy = —vleh 0Poaeas) + ared) @erach

(2)

and a similar equation for §, except that ¢, in Eq. (2) is to be replaced by g

d
wherc 4 and c  are the lilatational and shear wave speeds respectively. The
"steady-state" cigen-function solution to the homogeneous part of Eq. (2), namely,
the solution which appears time-invariant to an observer moving with the crack-

tip, and satisfies the prescribed traction conditions on the crack face (<0,

x2=t0) can be derived easily, as indicated in [2] and elsewhere. We use these

eigen function solutions for an infinite bodv, as basis functions for assumed




displacements within the '"crack-tip-singularity-clement'". However to satisfy
the full Eq. (2), the undetermined coefficients, Bj below, in the eigen
function expansion are taken to be functions of time. Thus, within the singular
element,

u (6,x,,t) = Uaj(E,XZ,V)Bj(t) [a=1,2; j=1,2..N] 3
where uuj are the above dessribed eigen-functions, and 8j are undetermined
parameters, which are to be determined from the finite element equations for
the cracked body.

As seen from Eq. (3), the eigen functions u , depend on the crack-tip

ol

velocity. In the present numerical approach, the crack-tip velocity is assumed

to be constant within each time-increment At, say vy between tl and tl+At, and

v, between t:2 and t2+At, etc. Thus, between tl and tl+At, the eigen-functions

embedded in the singularity-element correspond to velocity v1 and those between

t, and t_ +At correspond to velocity v Thus, the present finite element

2 2 2°
method is capable of handling non-uniform-velocity crack propagation.
The total velocities and accelerations of a material particle in the sin-

gular element, within each time step, correspoinding to Eq. (3), can be written

as:
a, = Uagdy T vuaj'}._sj (4)
and
i =u B, - 2vu R, + vy . -.B. (5)
a aj - j 1,7 aj, i
where (), . =3()/%., and (') implies a time derivative.

The salient features, pertinent to the studies reported in this paper, of
the present method, the mathematical details of which are reported elsewhere
[2,3], are as follows:

(i) The cigen functions u, (1=1,2) lead to the familiar (1/7) singu-

1
larities in strains and stresses. Thus the coefficient Bl(t) is directly

related (to within a scalar constant) to the dynamic stress intensity factor,

KI(‘)'




(1i) The compatibility of displacements, velocities, and accelerations of
material particles at the boundary of surrounding elements with those of the
surrounding (usual) isoparametric elements is satisfied through a continuous
least squares approach, If the displacements, velocities, and accelerations
of the nodes at the boundary of the singular-element, Vs’ are q, é, and § re-
spectively, the above leascfsquares technique leads to linear algebraic relations
between the sets (g, @, §)aﬁd (8, é, and E) where B are undetermined parameters
in the eigen-function expansion, Eq. (3), in the singular-element. From these
equations and the final finite element equations governing the nodal displace-
ments, velocities, and accelerations of the cracked structure, the variables
B @, é can be computed directly. Thus, the dynamic stress-intensity factor,

as well as its first two time derivatives, are computed directly in the present

procedure.

(iii) The "transient” finite element equations are integrated in time, using
the well-known Newmark's B-method [2,3].

(iv) Because of the use of the eigen functions in a moving coordinate sys-
tem, as in Eq. (3), in the singular-element, there is the presence of an "ap-
parent" damping matrix for the singular element. Further, for the same reason,
this damping matrix as well as the stiffness matrix of the singular-element, are
unsymmetric. However, the stiffness and mass matrices of the surrounding iso-
parametric elements are, of course, symmetric. Thus the final finite element
equation system will have a "small' degree of unsymmetry. This equation system
is solved, in the present studies, using a simple iterative scheme.

Details of Analysis of Prediction Problem:

The problem here is to predict the time histories of crack-length [Z(t)},
crack-velocity [f(t)-v(t)]}, and possible crack-arrest, for a specified re-
lationship of dynamic fracture toughness [KID] versus crack-velocity [v]. Until

very recently, it was presumed that the relationship K versus v was a unique

D
-7 -

v R i . - .
— E — SN et . . : 0 nomnie. i A e il 4




material property. Recently, however, this presumption was brought to question
as discussed in [10], due to the apparent geometry and load-rate dependence of
the dynamic fracture toughness. A slight specimen~geometry dependence of dy-
namic fracture toughness versus crack-velocity relationship was noted in the
experimental results of Xalthoff et al {6,7]. Kanninen et al{10] also found
that dynamically initiated Simpact loading) dynamic crack-propagation and quasi-
statically initiated dynamig crack propagation, apparently are characterized

by markedly different toughness properties. Ways out of this apparent impasse
that have been suggested include: (i) to postulate the dependence of dynamic
fracture toughness on second (acceleration) and higher-order time derivatives
of the crack-length and (ii) considerations of nonlinear effects near the
crack-tip, such as plasticity.

The problems considered in the present p;per, however, may be argued to
fall into the reals of linear elasto-dynamics. Experimental specimens for which
the present analysis is apélied, made of Araldite Bused by Kalthoff et al [7]
may be considered to be effectively linear-elastic, eventhough secondary effects
due to rate-dependent viscoelastic properties of the specimen may be present.

In any event, the present numerical results and their comparison with the ex-
perimental data may effectively serve to check the reasonableness of this ap-
proximation. Further, the presented analysis procedure can easily be extended
to account for any postulated dependence of dynamic fracture toughness on crack-
tip acceleration and/or other higher order time derivatives of crack length,

ie when Koo = Ko (5,55 ...

With this motivation, we present some details of anlavsis of the prediction
problem when the fracture toughness relation is given in the form KID = KID(E).
Thus, this analysis cannot, inherently, cither add to or lessen the controversy
surrounding the specimen seometryv dependence of KID'
Let the prediction problem be ¢ onsidered to have heen solved upto time tl.

- 8 -
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In order to find the solution at t2(3t1+At), the crack-velocity at t2, namely,

v Ei(tz) must be found. To this end, it is first noted that the dynamic stress-

2

intensity factor can be written as:

K = K (t,v) (6)
Since, in the present procedure, the velocity of crack-propagation is assumed
to be constant within each Fime-step, an approximate procedure to predict the
velocity at [tl+(At)/2] wili be sought. Using double Taylor series expansion,
it is seen from Eq. (6) that:

At ® 1 ,,At, 3 3 °
K t 4+ == C = — (=) = —_—
p{t1 ¥ 0 vy = L o 1) gp ¥ AV ol KRi(e,v) tovy

(7N

where K. 1s the predicted value of KI at t. + (At/2). Omne can, upon expanding

Ip 1

terms, write Eq. (7) as:

= LI 16,2 o
xIp = KI(tl.vl) + () K “1"’1“3( 2) L (tl’vl.) + R
. Aty 2 18tyo ¢ -
z Bl(tl) + (2) 81(t1)+2( 2) Bl(tl) + R = K’fp + R (8)

where, (') = 3()/3t, and R is "residue" of the Taylor expansion indicated in
Eq. (8). Note that use is made of the salient feature of the present analysis

procedure, that Bl(t) = KI(t), B, being the coefficient of the first eigen-func-

1

tions as in Eq. (3).

Since during dynamic crack propagation, KI = KID’ using the predicted KIp

of Eq. (8) and the specified K,  versus £(t) relation, the crack velocity v(zI)

ID
at the time [tl + (At/2)] can be predictcd. 1If the arrest dynamic-toughness is

Ki;r, crack-arrest is predicted if KIp < Kigr. Thus, in the present procedure,

crack arrest is predicted as a terminal event, if any, in the propagation analysis.
Using the above predicted crack-velocity value, the finite element system

of equations at time t based on Eq. (1), are coanstructed, and, from these,

2‘

the actual dynamic stress-intensity factor KI(tz) [Eel(t,)]is computed. Thus,

the actual K[ at tl + (At/2) is computed, as,

Aty
Ki(e + =5 = (/)[R (e) + K ()] (9)




The correlation between the predicted KIp of Eq. (8) and the actual K_ of Eq.

I

(9) can be seen to depend on the residue, "R", of Eq. (8). To ensure this cor-
relation, a further approximation is introduced in the present work that the

residue R at t. + (At/2) can be approximated by its known value at [tl—(At/Z)],

1
in the generic sense%) Thus, in the present procedure, the generic algorithm

+ (At/2) can be written as:
At 2 1 Ae.2 %

used to find KIp at tl

A, _ A2, At
Klp(t+ 3) =8 D+ G )T pe )+ 5 G 8, (k)
At At
- [KI(tl- 7{) - KIp(tl- 7;)] (10)

In all the presently reported computations, when Eq. (8) with R=0 was used, a
maximum error of the order of 3% between KIp and KI was noted. However, Eq. (10)
was used, this maximum error reduced to the qrder of 0.5%.

We now discuss the '"generation" and "propagation" calculations performed
on rectangular as well as tapered double cantilever beam specimens of Araldite
B materials. The results are compared with the corresponding experimental
results reported by Kalthoff et al [6,7], and pertinent conclusions are drawn.

Generation Calculations:

To demonstrate the "generation" type calculations, we first treat a wedge~
loaded rectangular double cantilever beam specimen (WL-RDCB), the crack-propagation
histories and dynamic stress-intensity factor histories in which were directly
measured by Kalthoff et al [6]. The relevant geometric data of the WL-RDCB speci-
men are indicated in Fig. 1 which also shows the finite element model wherein
the moving-singularity-element is shown hatched, at the beginning of crack propa-
gation. The material constants used in the present analvsis are: E=3380 MN/m2

and Poisson's ratio, v=0.33. In the experiments of {6], several test specimens,

1) As can be expected from Eq. (1), inherent numerical errors (usually, very
small) in the present tormulation are oscillatory in nature [5]. Thus R(++At/2)
is approximated by -R(t-At/w).

- 10 -




wherein cracks were initiated from blunted notches with crack-propagation

initiation stress-intensity factors K larger than the fracture toughness K

Iq Ic’

were studied.

Note that the actual loading mechanism in the experiment is closer, in num-
erical simulation, to loading the finite element model at point A in Fig. 1, with
the material to the left h?nd side of line BA in Fig. 1 also considered to be
participating in the motioﬁ. In the first attempt at the analysis, however,
the loading was modeled to act at point B in Fig. 1 instead, and the material
to the left of line AB was not modeled. In the remainder of the paper, the
numerical model wherein load was applied at point A of Fig. 1 and the material
to the left of line AB (Fig. 1) was also modeled, is often referred to as the
"actual loading condition', and the other one as the "simplified loading con-

dition", respectively.

In their report, Kalthoff et al [6] identify the RDCB specimens with K
/2 /2

Iq
values 2.32 MN/m3 and 1.33 MN/m3 , respectively, as specimens No. 4 and 17.
For convenience, the same identification is used in the presently reported
numerical simulation.

As noted earlier, the 'generation" calculation used as input, the experi-
mentally measured crack length (and hence crack-velocity) history. The output
of the calculation is the directly computed dynamic stress-intensity factor
at the tip of the propagating crack for various time instants.

Fig. 2 shows the considered crack velocity and length history for RDCB
specimen 4 as reported in [6]. Fig. 2 also shows the presently computed dynam-
ic KI as a function of time, along with comparison experimental results of [6],
and numerical results of Kobayashi [8]. The present calculation for KI was

pertormed in 3 alternate ways: (i) direct computation, since KI is same as

the undetermined paramcter 51 in the element basis functions as mentioned

- 11 -




earlier, (ii) from a crack-~tip integral which gives directly the crack-opening
energy, and using the crack-velocity dependent relation between KI and the
energy-release rate, and (iii) calculating fracture energy from a global energy

balance relation. It is seen that all the 3 values agree excellently, thus

pointing to the inherent consistency of the present numerical procedure. It
should be pointed out that -the results in Fig. 2 were based on using the

forementioned "simplified loading condition'. As seen from Fig. 2, the present
numerical results, as well as those of Kobayashi [8]. exhibit a pronounced
peak as compared to the experimental results, even thoug the peak occurs much
later in the present results as compared to those of Kobayashi [8].

Fig. 3 shows variation of different energy quantities: input energy
(W); kinetic energy (T); strain energy (U); and fracture energy (F), for RDCB
specimen 4, when the "simplified loading condition" is used. It should be
noted that in the present procedure, each of the quantities W, T, U, and F is
calculated separately and directly. Thus, the fact that U+T+F is equal to W
at all times (no other energy dissipation mechanisms are accounted for here)
is an inherent checg on the accuracy of the calculation. That this is so can
be seen from Fig. 3.

The Fig. 4 demonstrates the effects of the alternate loading-conditions
employed in the finite element model of RDCB specimen 4. In both the cases,
3/2

the model is loaded so that K, =2.32 MN/m

. For this value of K_ , the de-
1q Iq

formation profiles of the crack face when the load is applied at points A and
B, respectively, are shown in Fig. 4. It is seen from Fig. 4 that for the same
value of K[q: load (and dispacements) at points A and B, respectively, are:
970.7N (and 0.615 mm) and 972.8N (and .74 mm). Thus when the load is modelled

to act at B (the so-called "simplified loading case') there is more apparent

input of energy to the specimen than when the load is modeled to act at A

- 12 -




(the so-called "actual loading case") when an identical crack-length history
as in Fig. 3 is used, but with the "actual loading condition"”, the computed
dynamic k-factors are shown in Fig. 5. Comparing Figs. 2 and 5, it is seen
that an apparently small modification in the load-condition modeling contributes

to a substantial difference in the k-factor variation. It is seen that the
results in Fig. 5, for the'"actual loading case' agree remarkably well with the

experimental results (considering the possible rate-sensitive behaviour of
4raldite B as opoosed to the present linear elastic modeling), and the peak in
the present K-results is much smaller than that in Kobayashis' [8] results.
The variation in energies W, U, T, F for the "actual loading case" is shown in
Fig. 6. Comparing Fig. 3 and 6 it is seen that W in the "simplified loading
case" is higher than in the "actual'; T is higher in the "simplified" than in
the "actual”, and that the variations of U and F are qualitatively similar in
both the "loading cases".

The effect of the two loading cases for the RDCB specimenl? is exhibited
3/2

1 , the load

(and displacement) at points A and B are, respectively: 556.5N (and 0.35 mm)

in Fig. 7. It is seen that for the same value of K q=1.33 MN/m
and 557.7N (0.425 mm). Thus, once again, the apparent input energy to the
specimen is larger in the "simplified loading case' than in the "actual
loading case". This anamoly in modeling will have consequences in the
"propagation'" or "application" phase calculations in the RDCB No. 17 specimen

to be discussed later.

"PROPAGATION" (OR "APPLICATION") CALCULATIONS

We now present calculations aimed at predicting crack-propagation
history, and possible arrest, given the initial loading conditions and using
the hypothesis that there is a given material toughness data in the form of a

dynamic fracture-toughness-versus~crack-velocity-relation. Experimentally

- 13 -




evidence [6,7] that there is the possibility of a slight geometry dependence

of this toughness property. The material toughness data surmised from the
experimental findings of [6,7]) for RDCB specimens, and tapered double cantilever
beam specimens (TDCB) are shown in Fig. 8. In the present calculations, the
RDCB and TDCB toughness data are used in the prediction of crack-propagation

histories in RDCB and TDCB'specimens, resperctively. Calculations based on
using RDCB toughness data for analysing TDCB specimens, and vice versa, are

not orted here.

The results of the 'propagation’ or "application" type calculations for
RDCB specimen 4, using the toughness property data of Fig. 8 and "simplified”
beundary conditions, under plane stress conditions, are shown in Fig. 9. It is
seen that the present predicted crack length at arrest is larger than in the
experiment, even though the stress-intensity faztor variation correlates well
with the experimental result for most of the crack-propagation history. The

respective results with thé 'actual boundary conditions", and under plane stress
conditions, are shown in Fig. 10. It can be seen from Fig. 10 that the presently
calculated length history, crack-velocity history, as well as the K-factor
variation, are all in remarkably good agreement with the experimental results.

It is noted that the present peak value in the K-factor is much closer to

the experimental result, than that in the solution by Kobayashi [8]. To com~
pare the effects of plane stress versus plane strain conditions, a "propagation"
calculation was performed on the RDCB No. 4. Specimen, with "simplified boundary

conditions', and the results are shown in Fig. 1l1. Comparing Fig. 9 and 11,
it is seen noticeable difference can be found between the stress~intensity fac-
tor variation between the two cases in the initial phase of the crack propagation

history, and the final crack-arrest length i3 much higher in the plane stress

case thaan in the plune-strain case.
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The enérgy variations, U, T, F and W for the cases: (i) plane-stress,
simplified loading case, (ii) plane-stress, "actual loading case", and (iii)
plane-strain, simplified loading case, are shown in Figs. 12, 13, and 14 res-
pectively. Comparing Fig. 12 and 13 it is seen that the ratio of maximum
kinetic energy to input energy in the simplified loading case (0.278) is much

larger than in the actual loading case (0.233), while the crack arrest length,
comparing Figs. 9, and 10, is much larger in the "simplified loading case" than

in the "actual loading" case. Likewise, comparing Figs. 12 and 14, it is seen
that the ratio of maximum kinetic energy to input energy in the plane~strain
case (0.266) is smaller than in the plane-stress case (0.278), while the crack
arrest length is smaller in the plane strain case as compared to the plane-stress
case. .

The crack-surface deformation profile for the propagating crack in RDCB
No. 4 specimen are shown in Fig. 15 for various instances of time. Noting the
essentially linear shapes of these profiles, except asymptotically close to the
crack-tip, the possibility exists to devise simple method to find the stress-
intensity factors from the crack-mouth opening displacment. This possibility
is successfully explored in {[11]. Figs.16 through 21 show the contours of
principal~stress difference values at various instances of time {n the moving-sin-
gularity element of the RDCB 4 specimen model, in the plane stress case. The sequen-
tial pictures demonstrate graphically, not only the singular-stress-field but
the total stress field, and its magnification near the propagating crack-tip.
Since in the present finite clement method, the effects of stress-wave inter-
actions are accurately accounted for, and the total stress (singular as
well as nonsingular) field can be computed accurately, results similar to these
as well as the results for cimcumferential stress 950 (not shown here) can be

used in the analysis of crack-branching. Such studies will be presented else-
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where, shortly.

The results for RDCB 17 specimen for: (i) plane stress, simplified
loading case, and (ii) plane stress, actual loading case, are shown in Figs.
22 and 23 respectively. Comparing Figs. 22 and 23, it is seen that the higher
crack arrest length in the,simplified loading case than in the actual loading
case can be attributed to khe higher apparent input energy in the former than

in the latter case, as seen from Fig. 7. In the plane-stress, actual loading
case, the calculation was continued for a sufficient time after crack arrest

(t_320 sec), and the obser;ed oscillation in K-factor is shown in Fig. 24. This
oscillation is qualitatively similar to that recorded in the experiments [6].
The results for the plane-strain, simplified loading case, are shown in Fig. 25.
In comparing Figs. 22 and 25, comments essentially similar to those made in
comparing Figs. 9 and 11, can be made. The energy variations in RDCB 17 specimen
for: (i) plane-stress, simplified loading case; (ii) plane-stress actual
loading case, and (iii) plane-strain, simplified loading case, are shown in Figs.
26, 27, and 28, respectively. Again, in comparing Figs. 26, 27, and 28, comments
essentially similar to those in connection with the comparison of Figs. 12,
13, and 14, respectively, can be made. Thus there is a correlation between the
ratio of the maximum kinetic energy to input energy, and the crack arrest length.
The crack-surface deformation profiles at various instants of time in RDCB 17
specimen shown in Fig. 29 are similar to those in Fig. 15 for specimen 4. Re-
sults such as in Figs. 15 and 29 form the basis for methods of obtaining K from
crack-mouth-opening displacments discussed by the authors elsewhere [11].

The finite element model for the tapered double cantilever beam (TDCB)
specimen is shown in Fig. 30. The cross-hatched element shown in Fig. 30 is
the authors' moving singularity element, and the mesh shown in Fig. 30 is thus

at the beginning of crack propagation.

- 16 -




As in RDCB specimen, two loading cases were considered: (i) the edge
loading case wherein load is supposed to act at point B, and (ii) the actual
pin loading case wherein the load is modeled to act at point A in Fig. 30.
Plane stress conditions are invoked in both the loading cases. The influence
of loading position is demonstrated in Fig. 31. In all the cases shown in

/2

Fig. 31, the model is loaded so that K_ =2.08 MN/m3 . As the loading point

Iq

approaches to the specimen surface while keeping the x,-coordinate constant,

1
the displacement at the loading point becomes larger while the reaction force
is almost constant, thus tﬂe input energy to the specimen becomes higher. The
input energy in the edge loading (loading point B) is also shown in Fig. 31.
It is seen that the input energy in the edge loading case is much higher than
that in the actual loading case.

The computed results for Kz(t), Z(t) and £(t) for both the loading cases
are shown in Figs. 32 and 33 respectively. In the edge loading case as shown
in Fig. 32, after 240 usec the stress intensity factor becomes almost constant
and the crack propagation with a relatively slow speed (v = 100 m/sec). In the
actual loading case, however, as shwon in Fig. 33 the crack was arrested earlier
than in the edge loading case. The KI value variation with crack length for
the actual as well as edge loading case is shown in Fig. 34. The result in
the actual loading case shows better agreement with the experimental results
obtained by Kalthoff et al [7].

The energy variations for the edge loading and actual loading cases are
shown in Fig. 35 and 36 respectively. Comparing Figs. 35 and 36 it is seen
that the ratio of maximum kinetic energy to input energy in the edge loading
case (0.132) is much larger than that in the actual loading case (0.093). As
also observed in the RDCB specimen, the ratio of maximum kinetic energy to input

energy correlares with the crack arrest length, i.e., increasing Earr with

- 17 -




the increasing value of (max T/W). Here the correlation between the total energy
(U+T+F) and the input energy W in the TDCB specimen is much better than in the
RDCB specimen as shown earlier.

The crack opening profiles in the edge loading case, at various instants
of time, are shown in Fig.,37. Because of the loading at the edge of the
specimen, these profiles a;e distinctly nonlinear as compared to those in actual
loading case (see Figs. 15 and 29 in the RDCB specimen).

Finally, Figs. 38 to 42 exhibit sequentially, the contours of principal-
stress difference at various instants of time in the moving-singularity element
of the TDCB specimen with the edge loading. It is noted that the size of the
moving-singularity element (16x8) mm for the TDCB specimen while it is (42x21) mm
for the RDCB specimen. Comparing Figs. 16 t; 21 on the one hand, and Figs. 38
to 42 on the other, it is seen that the effects of crack-propagation and stress
wave interactions are more.complex in the TDCB specimen than in the RDCB specimen.

Concluding Remarks:

The results presented above indicate that'the presently developed compu-
tational procedures are capable of accurately predicting dynamic crack propa-
gation and arrest, based on the hypothesis that there exist a 'reasonable”
geometry independent material property in the form of a dynamic-fracture-~ tough-
ness-versus-crack velocity. The results also demonstrate the importance of
modeling the loading conditions and other boundary conditions highly accurately,
in an elastodynamic crack propagation problem.

However, other questions that may be germane to the subject of dynamic
fracture mechanics itself, such as the load-rate sensitivity of dynamic frac-
ture toughness, etc., need to be resolved before the power of the present pro-
cedures can be fully tested. These questions, while not forming the subject of
the present paper, have been attempted to be discussed by the authors [12], and

others [10] elsewhere.
- 18 -
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Finite element model for RDCB specimen

Variation of dynamic stress intensity factors in RDCB No. 4 with
simplified loading (generation phase)

Energy variations in RDCB No. 4 with simplified loading (generation
phase)

Crack opening profiles in RDCB No. 4 with different loading conditions

Variation of dynamic stress intensity factors in RDCB No. 4 with actual
loading (generation phase)

Energy variation'in RDCB No. 4 with actual loading (generation phase)

Crack opening profiles in RDCB No. 17 with different loading con-
ditions

Crack velocity versus dynamic fracture toughness relations for
Araldite B epoxy (Kalthoff et al)

Variation of dynamic stress intensity factors in RDCB No. 4 with
simplified loading (application phase, plane stress)

Variation of Dynamic stress intensity factors in RDCB No. 4 with
actual loading (application phase, plane stress)

Variation of dynamic stress intensity factors in RDCB No. &4 with
simplified loading (application phase, plane strain)

Energy variations in RDCB No. 4 with simplified loading (apnlication
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Variation of crack opening profiles in RDCB No. 4 (actual loading)
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Contours of principal-stress difference in RDCB No. 4 (t=400usec)
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Contours of principal-stress difference in RDCB No. (t=528usec)
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Fig. 22: Variation of dynamic stress intensity factors in RDCB No. 17 with
simplified loading (plane stress)

Fig. 23: Variation of dynamic intensity factors in RDCB No, 17 with actual
loading (plane stress)

Fig. 24: Variation of dynamic stress intensity factors in RDCB No. 17 after
crack arrest

Fig. 25: Variation of dynamic stress intensity factors in RDCB No. 17 with
simplified loading (plane strain)

Fig. 26: Energy variation in RDCB No. 17 with simplifigd loading (plane stress)
Fig. 27: Energy variations in RDCB No. 17 with actual loading (plane stress)

Fig. 28: Energy variations in RDCB No. 17 with simplified loading (plane strain)
Fig. 29: Variation of crack opening profiles in RDCB No. 17 (actual loading)

Fig. 30: Finite element model for TDCB specimen

Fig. 31: Input energy variation in TDCB speéimen with various loading points

Fig. 32: Varilation of stress intensity factors in TDCB specimen with edge loading

Fig. 33: Variation of streéss intensity factors in TDCB specimen with actual
loading

Fig. 34: Dynamic stress intensity factor versus crack length relations for
TDCB specimen

Fig. 35: Energy variations in TDCB specimen with edge loading
Fig. 36: Energy variations in TDCB specimen with actual loading

Fig. 37: Variation of crack opening profiles in TDCB specimen with edge
loading :

Fig. 38: Contours of principal-stres. difference in TDCB specimen (t=0.0usec)
Fig. 39: Contours of principal-streess difference in TDCB specimen (t=100usec)
Fig. 40: Contours of principal-stress difference in TDCB specimen (t=200usec)
Fig. 41: Contours of principal-stress difference in TDCB specimen (t=300usec)

Fig. 42: Contours of principal-stress idfference in TDCB specimen (t=400usec)
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